
Processes

In Lab 11 we will look at an advanced topic -- how
to create and control processes on our own. Today
we will just get started with some of the
terminology.

First of all, a process is a set of instructions to be
executed one after another. So far all of our
programs have been single processes.

Computers can run more than one process at a
time. While my laptop is displaying these slides, it
is also keeping track of the time, and running other
programs, some of which I have asked it to run and
some of which are for the operating system.

A single processor can only run one process at a
time. It appears that the processor is doing many
things at the same time because it does a little bit
of one, a little bit of the next, and so forth, and the
"time slices" are so small and run so quickly that it
appears they are happening at the same time.

However, most modern computers, even personal
laptops, contain multiple processors.

There are two big reasons for writing programs
that use multiple processes:

• If you design the program right, one part of
the program can get work done while
another part is waiting for something, such
as user input or access to a file.

• Multiple processes can accomplish a big task
more quickly than a single process.

The workflow for this is

a) Create a single function that does what we
want a process to do.

b) Create a process to run that function.

Running Processes in Python

We usually run Python programs within the Idle
application. This doesn't work with programs that spawn
new processes; Idle uses its own processes and interferes
with the creation of new ones. The easiest way to run
the programs we will create in Lab 11 is to navigate in a
terminal (or shell) window to the right folder and run the
program foo.py with command

> python3 foo.py

On Windows I can run these programs by right-clicking
on the program file and choosing python from the menu.
You should be able to do something similar on Macs.

To see the program output on Windows I need to
replace the usual call to main() with

if __name__ == "__main__":
 main()
 input()

This tells the operating system to run my main()
function in the "__main__" process to which the
standard output stream is attached. This happens
by default in Linux systems, so you don't need to do
this for the Lab 11 programs, but it doesn't hurt to
include it.

Now, back to Python

We will make use of two Python modules:

 os (which contains information from the
 operating system)
 multiprocessing

As usual, before we can use modules we need to
import them.

The primary class we will use is in the
multiprocessing module. Its name is Process. The
Process constructor takes many arguments that
have default values. We will use only two of them:

multiprocessing.Process(target, args)

target is the name of the function you want to run
in the process.

args is a tuple with the argument values for the
function. Even if there is only one argument, put a
comma after it.

Constructing a Process object creates a process to
run the target function. We then run the process
by calling its start() method.

For example, here is a short program that creates
and runs a process:

import multiprocessing

def printer(stringToPrint, numTimes):
 for i in range(numTimes):
 print(stringToPrint)

def main():
 p = multiprocessing.Process(target=printer,
 args = ("This is fun!", 5))
 p.start()

if __name__ == "__main__":
 main()
 input()

This gets more interesting if we change main() to

def main():
 p = multiprocessing.Process(target=printer,
 args = ("She loves me.", 5))
 q = multiprocessing.Process(target=printer,
 args = ("She loves me not.", 5))
 p.start()
 q.start()

Now the two processes interleave, producing
results such as

She loves me.
She loves me not.
She loves me not.
She loves me not.
She loves me.
She loves me not.
She loves me.
She loves me.
She loves me not.
She loves me.

